An analytical treatment to fractional gas dynamics equation

نویسندگان

  • Mohamed S. Al-luhaibi
  • Nahed A. Saker
چکیده

In this paper, the new iterative method (NIM) is applied to solve nonlinear fractional gas dynamics equation. Further, a coupling of the Sumudu transform and Adomian decomposion (STADM) is used to get an approximate solution of the same problem. The results obtained by the two methods are found to be in agreement. Therefore, the NIM may be considered efficient method for finding approximate solutions of both linear and nonlinear fractional differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

Homotopy Analysis Transform Method for Time-Space Fractional Gas Dynamics Equation

Homotopy Analysis Transform Method (HATM) is applied to tackle timespace fractional Gas dynamics equation. The proposed HATM is an elegant coupling of homotopy analysis method (HAM) and Laplace transform. The method gives an analytical solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The numerical solutions obtained...

متن کامل

Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis

The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...

متن کامل

Analytical solutions for the fractional Fisher's equation

In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables  method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...

متن کامل

Stochastic solution to a time-fractional attenuated wave equation.

The power law wave equation uses two different fractional derivative terms to model wave propagation with power law attenuation. This equation averages complex nonlinear dynamics into a convenient, tractable form with an explicit analytical solution. This paper develops a random walk model to explain the appearance and meaning of the fractional derivative terms in that equation, and discusses a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014